2,597 research outputs found

    Superadiabatic transitions in quantum molecular dynamics

    Get PDF
    We study the dynamics of a molecule’s nuclear wave function near an avoided crossing of two electronic energy levels for one nuclear degree of freedom. We derive the general form of the Schrödinger equation in the nth superadiabatic representation for all n є N. Using these results, we obtain closed formulas for the time development of the component of the wave function in an initially unoccupied energy subspace when a wave packet travels through the transition region. In the optimal superadiabatic representation, which we define, this component builds up monotonically. Finally, we give an explicit formula for the transition wave function away from the avoided crossing, which is in excellent agreement with high-precision numerical calculations

    Large Nc Continuum Reduction and the Thermodynamics of QCD

    Full text link
    It is noted that if large Nc continuum reduction applies to an observable, then that observable is independent of temperature for all temperatures below some critical value. This fact, plus the fact that mesons and glueballs are weakly interacting at large Nc is used as the basis for a derivation of large Nc continuum reduction for the chiral condensate. The structure of this derivation is quite general and can be extended to a wide class of observables

    The Hagedorn temperature Revisited

    Full text link
    The Hagedorn temperature, T_H is determined from the number of hadronic resonances including all mesons and baryons. This leads to a stable result T_H = 174 MeV consistent with the critical and the chemical freeze-out temperatures at zero chemical potential. We use this result to calculate the speed of sound and other thermodynamic quantities in the resonance hadron gas model for a wide range of baryon chemical potentials following the chemical freeze-out curve. We compare some of our results to those obtained previously in other papers.Comment: 13 pages, 4 figure

    Micro-canonical pentaquark production in \ee annihilations

    Full text link
    The existence of pentaquarks, namely baryonic states made up of four quarks and one antiquark, became questionable, because the candidates, i.e. the Θ+\Theta^+ peak, are seen in certain reactions, i.e. p+p collisions, but not in others, i.e. \ee annihilations. In this paper, we estimate the production of Θ+(1540)\Theta ^{+}(1540) and Ξ−−(1860)\Xi^{--} (1860) in \ee annihilations at different energies using Fermi statistical model as originally proposed in its microcanonical form. The results is compared with that from pp collisions at SPS and RHIC energies. We find that, if pentaquark states exist, the production is highly possible in \ee annihilations. For example, at LEP energy s\sqrt{s}=91.2 GeV, both Θ+(1540)\Theta ^{+}(1540) and Ξ−−(1860)\Xi^{--} (1860) yield more than in pp collisions at SPS and RHIC energy.Comment: 7 pages 2 figure

    Is there a black hole minimum mass?

    Get PDF
    Applying the first and generalised second laws of thermodynamics for a realistic process of near critical black hole formation, we derive an entropy bound, which is identical to Bekenstein's one for radiation. Relying upon this bound, we derive an absolute minimum mass ∌0.04g∗mPl\sim0.04 \sqrt{g_{*}}m_{\rm Pl}, where g∗g_{*} and mPlm_{\rm Pl} is the effective degrees of freedom for the initial temparature and the Planck mass, respectively. Since this minimum mass coincides with the lower bound on masses of which black holes can be regarded as classical against the Hawking evaporation, the thermodynamical argument will not prohibit the formation of the smallest classical black hole. For more general situations, we derive a minimum mass, which may depend on the initial value for entropy per particle. For primordial black holes, however, we show that this minimum mass can not be much greater than the Planck mass at any formation epoch of the Universe, as long as g∗g_{*} is within a reasonable range. We also derive a size-independent upper bound on the entropy density of a stiff fluid in terms of the energy density.Comment: 4 pages, accepted for publication in Physical Review D, minor correctio

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    The Detection of Methionine Sulfoxide in Tubulin and Glyceraldehyde 3-Phosphate Dehydrogenase

    Get PDF
    Oxidative stress is an imbalance between the production of reactive oxygen species (ROS) and antioxidant defenses (1). Free radicals are an unavoidable by-product of many biochemical processes, and in the case of activated neutrophils, are deliberately formed. Oxidative stressors such as infection, inflammation, metabolic abnormalities, or environmental contaminants overwhelm the body\u27s defense mechanisms allowing reactive oxygen species concentrations to increase. This increase in ROS can cause damage to biological macromolecules including proteins, lipids and DNA. An accumulation of oxidative damage is the underlying cause of many diseases because oxidative metabolism is an essential part of every cell\u27s metabolism (2). It has been suggested that accumulation over a long period of time plays a significant role in the aging process, inflammatory diseases (arthritis, vasculitis), heart disease, and several neurodegenerative diseases such as Alzheimer\u27s and Parkinson\u27s diseases

    Strangeness, Equilibration, Hadronization

    Get PDF
    In these remarks I explain the motivation which leads us to consider chemical nonequilibrium processes in flavor equilibration and in statistical hadroniziation of quark--gluon plasma (QGP). Statistical hadronization allowing for chemical non-equilibrium is introduced. The reesults of fits to RHIC-130 results, including multistrange hadrons, are shown to agree only with the model of an exploding QGP fireball.Comment: 8 pages including one figure, discussion contribution at Strange Quark Matter 2001, Frankfurt, submitted to J. Phys.

    Crossover transition in bag-like models

    Full text link
    We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.Comment: Corresponds to the published version. Added few references and changed the titl
    • 

    corecore